Fusing Color and Texture Cues to Categorize the Fruit Diseases from Images

نویسندگان

  • Shiv Ram Dubey
  • Anand Singh Jalal
چکیده

The economic and production losses in agricultural industry worldwide are due to the presence of diseases in the several kinds of fruits. In this paper, a method for the classification of fruit diseases is proposed and experimentally validated. The image processing based proposed approach is composed of the following main steps; in the first step K-Means clustering technique is used for the defect segmentation, in the second step color and textural cues are extracted and fused from the segmented image, and finally images are classified into one of the classes by using a Multi-class Support Vector Machine. We have considered diseases of apple as a test case and evaluated our approach for three types of apple diseases namely apple scab, apple blotch and apple rot and normal apples without diseases. Our experimentation points out that the proposed fusion scheme can significantly support accurate detection and automatic classification of fruit diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image

Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...

متن کامل

3D Texton Spaces for Color-Texture Retrieval

Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest pro...

متن کامل

Adaptive texture and color segmentation for tracking moving objects

Color segmentation is a very popular technique for real-time object tracking. However, even with adaptive color segmentation schemes, under varying environmental conditions in video sequences, the tracking tends to be unreliable. To overcome this problem, many multiple cue fusion techniques have been suggested. One of the cues that complements color nicely, is texture. However, texture segmenta...

متن کامل

Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-road Navigation

Detecting water hazards is a significant challenge to unmanned ground vehicle autonomous off-road navigation. This paper focuses on detecting the presence of water during the daytime using color cameras. A multi-cue approach is taken. Evidence of the presence of water is generated from color, texture, and the detection of reflections in stereo range data. A rule base for fusing water cues was d...

متن کامل

Combining Monocular and Stereo Depth Cues

A lot of work has been done extracting depth from image sequences, and relatively less has been done using only single images. Very little has been done merging these together. This paper describes the fusing of depth estimation from two images, with monocular cues. The paper will provide an overview of the stereo algorithm, and the details of fusing the stereo range data with monocular image f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1412.7277  شماره 

صفحات  -

تاریخ انتشار 2014